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eservoir-parameter identification using minimum relative entropy-based
ayesian inversion of seismic AVA and marine CSEM data
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ABSTRACT

A stochastic joint-inversion approach for estimating reser-
voir-fluid saturations and porosity is proposed. The approach
couples seismic amplitude variation with angle �AVA� and
marine controlled-source electromagnetic �CSEM� forward
models into a Bayesian framework, which allows for integra-
tion of complementary information. To obtain minimally
subjective prior probabilities required for the Bayesian ap-
proach, the principle of minimum relative entropy �MRE� is
employed. Instead of single-value estimates provided by de-
terministic methods, the approach gives a probability distri-
bution for any unknown parameter of interest, such as reser-
voir-fluid saturations or porosity at various locations. The
distribution means, modes, and confidence intervals can be
calculated, providing a more complete understanding of the
uncertainty in the parameter estimates. The approach is dem-
onstrated using synthetic and field data sets. Results show
that joint inversion using seismic and EM data gives better
estimates of reservoir parameters than estimates from either
geophysical data set used in isolation. Moreover, a more in-
formative prior leads to much narrower predictive intervals
of the target parameters, with mean values of the posterior
distributions closer to logged values.

INTRODUCTION

Estimating reservoir-fluid saturation and porosity is the goal of
any geophysical surveys in hydrocarbon exploration and produc-

ion. Changes in pore pressure and water saturation can be predicted
hen only oil and water are present �Landro, 2001�. However, the
resence of gas may complicate the estimation problem and may
ake it ill posed. This difficulty is primarily from the insensitivity of
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coustic-�Vp� and shear-�Vs� wave velocities to gas saturation. Ac-
ording to Gassmann’s equations, a gas sand with 1% gas saturation
an have the same Vp/Vs as a commercial accumulation of gas �Cast-
gna, 1993�. Previous studies on the inversion of seismic amplitude
ariation with angle �AVA� or amplitude variation with offset �AVO�
ata to predict seismic parameters �Debski and Tarantola, 1995;
lessix and Bork, 2000; Buland and More, 2003� conclude that cur-
ent seismic technology cannot reliably be used to distinguish eco-
omic from noneconomic gas accumulations, resulting in signifi-
ant exploration losses. Regardless of this inability, seismic technol-
gy can provide two critical pieces of information needed for the ul-
imate estimation of gas saturation: the physical location of the
eservoir unit, to within a few percent of the true values, and the po-
osity of the reservoir unit.

In contrast to the insensitivity of seismic attributes to gas satura-
ion, electrical resistivity of reservoir rocks is very sensitive to gas
aturation through the link to water saturation, as can be seen from
rchie’s law �Archie, 1942�, which predicts the bulk resistivity as a

unction of gas saturation �1−Sw�, as shown in Figure 1. The depen-
ence of the bulk resistivity on gas saturation is useful for discrimi-
ating economic from noneconomic gas saturation in that the most
apid change in resistivity occurs at saturations larger than 0.7,
hich is mostly above the lower threshold saturation value needed

or economic production.
Estimates for bulk resistivity of reservoir rocks can be obtained

sing marine controlled-source electromagnetic �CSEM� sounding
ystems, which typically consist of a ship-towed electric-dipole
ource and a series of seafloor-deployed recording instruments capa-
le of recording orthogonal electric fields.Although both CSEM and
assive-source magnetotelluric �MT� systems can be considered for
etroleum-related exploration �Hoversten and Unsworth, 1994�,
SEM systems have superior resolving capabilities when compared

o MT. In the last few years, attention has been focused on the use
f CSEM systems in direct detection/mapping of hydrocarbons
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Ellingsrud et al., 2002�, and a number of contractors have begun of-
ering marine CSEM data on a commercial basis.

Because seismic and EM data have different spatial coverage and
rovide different images of the geology, the inclusion of EM data has
he potential to improve reservoir parameter estimates over indus-
ry-standard seismic AVA techniques by providing complementary
nformation to seismic AVA data. This is not a new idea, and studies
long this line are reported �e.g., Tseng and Lee, 2001; and Hover-
ten et al., 2003�. However, several challenges need to be addressed
efore such integration becomes suitable for common applications.

The major challenge is to show if and how the two different yet
omplementary types of data can be used beneficially. In fact, it is
till a challenging issue to integrate various types of data and correct-
y weight their associated errors. For example, different types of data
re characterized by different error levels, which are not always
nown prior to the inversion. Therefore, methods are needed for
odeling such errors with minimum subjectivity.
Another challenge is that deterministic inversion is often an

ll-posed mathematical problem because of nonuniqueness and in-
tability. This suggests that inversion formulated in a stochastic
ramework �Rubin, 2003� may be more robust than traditional deter-
inistic approaches, but additional research is needed to identify

uitable stochastic formulations and to address specific issues such
s computing efficiency.

Finally, incorporating prior information is not trivial. Prior infor-
ation is available, in many cases, to constrain the inversion. Such

nformation may come from geologically similar formations in the
orm of imprecise information such as statistical moments �means,
ariances, etc.� of the target parameters. Questions then arise as to
hat would be a rational approach for formulating such prior infor-
ation within the stochastic framework.
To address these issues, we propose an entropy-based Bayesian

tochastic inversion approach for estimating reservoir-fluid satura-
ions and porosity. The approach couples seismic AVA and marine

igure 1. Reservoir bulk resistivity as a function of gas saturation
Sg� using the parameters determined from log data at the Troll field
ite. Porosity = 20%.
SEM forward models into a Bayesian framework, which allows for
ntegration between complementary information. A deterministic
oint-inversion algorithm using nonlinear optimization for the same
oint-inverse problem is covered in a companion paper by Hoversten
t al. �2006�. In this paper, we briefly compare the deterministic ap-
roach and our proposed stochastic approach.

METHODOLOGY

Seismic data used for this study are prestacked angle gathers that
ave been normal moveout �NMO� corrected and processed to re-
ove multiples. Marine CSEM data were collected at 24 receivers

long a line across a portion of the Troll field. For our demonstration,
e have used the amplitude and phase of the recorded electric field

s a function of frequency and transmitter-receiver offset at one of
hese receivers located nearest a well that is used for comparison.
he AVA data are from a common midpoint �CMP� located within
0 m of the CSEM receiver. In the joint inversion, different model-
ng domains for the seismic AVA and the CSEM calculations are re-
uired as illustrated in Figure 2, because of the substantial differenc-
s in the nature of energy propagation in the earth caused by a seis-
ic source as opposed to a CSEM source. Particularly, EM energy is

haracterized by higher attenuation than seismic energy. After ap-
ropriate seismic processing �including amplitude recovery�, one
an assume that the seismic attenuation in the earth above the target
nterval �the overburden� has been accounted for and thus can be
eglected in the seismic modeling. However, this assumption is in-
ppropriate when modeling EM data because the effects of the over-
urden on the target-zone responses are large and cannot be estimat-
d independently. Thus, EM calculations require a model with
lectrical conductivity described from the sea surface down �an infi-
ite air layer is also included�, while the seismic calculations only re-
uire reflection coefficients to be calculated over the area of interest.

Although attenuation in the overburden can be neglected in the
eismic modeling, overburden velocities �Vp and Vs� and bulk densi-
y ��� above the target need to be included as parameters in seismic
nversion. The reason is that a time window of the seismic AVA data
s chosen in the inversion, and it is possible that the window does not
xactly match the target �reservoir� zone, especially when the avail-
ble velocity model used for time-to-depth conversions is not exact.

igure 2. Schematic map of the inversion domain. The target zone is
arameterized by Sg, Sw, and � and is surrounded by Vp, Vs, and den-
ity zone for the AVA data and surrounded by conductivity zone for
he CSEM data. The conductivity model includes the air layer for
SEM calculations.
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Reservoir-parameter identification O79
or EM inversion, since electrical conductivities in the seawater
�sea� and in the overburden ��over� often have important effects on
he estimation of gas saturation in the reservoir, we also consider
hem as unknowns. Thus, the unknowns to be inferred from seismic-
ata inversion include water saturation Sw, gas saturation Sg, oil sat-
ration So, and porosity � in the target zone, as well as Vp, Vs, and
ensity � in the layers below and above the target zone. Note that So

s not an independent random-variable vector, since So = 1 − Sw

Sg. The unknowns in EM data inversion include Sw, Sg, So, and �
n the target zone, as well as �sea and �over. The layer thickness can
lso be considered as unknown. Note that we use boldface letters to
epresent vectors.

We represent the vector of unknowns by m. To account for param-
ter uncertainty, m is viewed as a realization of a random-variable
ector M, which is characterized by a p-variate probability-distribu-
ion function �PDF� fM�m�, where p is the total number of parame-
ers in M. The expectation of a function g�m� �for example, the mean
r variance� of m can be calculated as

�g�m�� = �
m

g�m�fM�m�dpm , �1�

hich is the integration over the entire vector space of m.

ayesian theory

Our approach is based on Bayes’ theorem, which has previously
een introduced into the field of reservoir characterization. For ex-
mple, Eidsvik et al. �2002� and Buland and More �2003� develop
ethods for linearized seismic AVO inversion within a Bayesian

ramework where the posterior distributions of the target parameters
re explored by Markov-chain Monte Carlo �MCMC� simulation.
he Bayesian approach, coupled with the MCMC method, has been

ested on both synthetic and field data sets by Chen et al. �2004�,
here both seismicAVAand EM data were included in the inverison
ithout linearization.
In this study, we propose an entropy-based Bayesian approach

hat can quantify uncertainty as well as allow implementation of dif-
erent sources of information. These sources may include prior in-
ormation as well as observations such as seismic AVA and marine
SEM data. The approach determines the prior PDFs of the target
arameters using the minimum relative entropy �MRE� method
Woodbury and Ulrych, 1993; Rubin, 2003; Hou and Rubin, 2005�
nd evaluates the posterior PDFs using a quasi-Monte Carlo method
Ueberhuber, 1997, p. 125�.

For completeness, the Bayes theorem is quoted here �Rubin,
003, chapter 13�:

fM�D,I�m�d*,I� =
fD�M,I�d*�m,I�fM�I�m�I�

�
m

fD�M,I�d*�m,I�fM�I�m�I�dpm

. �2�

apital letters denote random variables and lower-case letters de-
ote their realizations. Here, d* is a vector of observations, which in-
ludes both marine CSEM and seismicAVAdata, and which we con-
ider as a realization of a vector D; m �a realization of M� is a vector
f order p, which includes the p parameters needed for modeling
he seismic and EM responses; and I denotes the prior information
vailable on m. If we know the true values m of M, we can compute
he noise-free data d of D forward modeled from them. The term
fM�I�m�I� is the prior PDF of m given I, fD�M,I�d*�m,I� is the likeli-
ood function, and fM�D,I�m�d*,I� is the posterior PDF. Simply stat-
d, the likelihood function maps the prior into the posterior, based on
he conditional PDF of the observations.

Our analysis consists of three steps. First, we model the prior by
se of MRE, a systematic, analytic method that determines the prior
DF based on information such as bounds, means, or variances of

he parameters with minimum subjectivity. Second, we model the
ikelihood function; we assume d* = g�m� + �, where g is a forward
odel and � denotes the differences between observations and for-
ard-model responses. In our analysis, g can be either g1, where g1 is
forward seismic AVA model, or g2, where g2 is a forward-EM
odel. Third, we model the posterior distributions and calculation of

he corresponding statistics of the parameters using quasi-Monte
arlo integration. These steps are explained in the following sec-

ions.

odeling the prior using MRE

The MRE method is a general approach for inferring a probability
istribution from information �constraints� that incompletely char-
cterizes that distribution. These constraints may include reasonable
ower and upper bounds, i.e., averages and variances of the subsur-
ace parameters, which can be obtained from geophysical databases
r from measurements �e.g., well logs� of a few or all of the random
ariables in M at or near the study site.

The MRE solution for the prior PDF in the case where information
s available in the form of the first and second statistical moments
e.g., the mean and the variance� as well as upper and lower bounds
as been derived �Hou and Rubin, 2005�. The prior PDF in this case
ssumes the form of a multivariate, truncated, Gaussian PDF:

fM�I�m�I�

= �
j=1

p �� j

�
exp	− � j
mj +

� j

2� j
�2�

�	�2� j
Uj +
� j

2� j
�� − �	�2� j
Lj +

� j

2� j
��

,

�3�

here I represents the prior information, � represents the standard
aussian cumulative-distribution function �CDF�, Uj and Lj are the
pper and lower bounds of parameter mj, and � j and � j are the multi-
liers that must be determined from the constraints, including the
ounds and the moments.

The PDF represented by equation 3 has several interesting prop-
rties, making it a general solution. In the absence of bounds,

fM j�I
�m j�I� assumes the form of the Gaussian distribution with mean

� j/�2� j� and variance 1/�2� j�. If the standard deviation is large
ompared to the minimum difference between the expectation
nd the bounds, it has the form of a truncated exponential. If the vari-
nce is large and the mean is in the middle of the bounds, the PDF be-
omes uniform. When the variance goes to zero, then � j→�,

lim
j→�

fM j�I
�m j�I� is a delta function ��m j − s j�. When Lj→Uj, the lim-

t of the PDF is also a delta function.
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The MRE PDFs may still be helpful when a bimodal distribution
s possible in practice. If a distribution has two modes, when mode 1
as higher possibility than mode 2, then the prior mean is closer to
ode 1 and the MRE PDF may take the form of truncated exponen-

ial, which will assign higher weight to mode 1. If the two modes
ave similar weights, so that the prior mean is in the middle of the
ounds, the MRE PDF will be uniform, which guarantees that the
alues around the two modes have the similar chance to be sampled.
he MRE-Bayesian approach does allow the posterior distribution

o have multimodes, as shown later in the inversion results.
Moreover, when we expect bimodal distributions, covering the

roduced and nonproduced parts of a reservoir or in exploration the
aturated and unsaturated zones, the MRE prior PDF can be general-
zed as f = Ind�x�f1 + 
1 − Ind�x��f2 where Ind is an indicator vari-
ble with Ind = 1 if x is in unsaturated �or nonproduced� area. The
DF f1 corresponds to the unsaturated �or nonproduced� area, and f2

orresponds to saturated �or produced�; f1 is determined using the
RE method when the bounds and the prior moments are available

or mode 1, so as to f2.
Let’s say we are looking at a prior in a place where P = Prob�Ind
1� = 0.4, then the prior is f�x�Ind = 1�Prob�Ind = 1� + f�x�Ind
0�Prob�Ind = 0� = f1�0.4 + f2�0.6. If P is unknown, we can

lso consider P as a random variable and derive its prior PDF using
he MRE theory. Sampling from the generalized prior PDF f can be
s follows:

1� generate a random sample u0 from the distribution of P;
2� generate a random number u1 from the �0, 1� uniform distri-

bution;
3� if u0 	u1, we generate the sample from f1, otherwise we use

the sample from f2;
4� repeat steps 1–3.

orward models and the likelihood function

Forward geophysical modeling is used to estimate the likelihood
unction fD�M,I�d*�m,I�. Our analysis assumes that the underlying
eological structure can be represented by a layered 1D model.

For the 1D seismic AVA model g1, the Zoeppritz equation is used
o calculate the angle-dependent reflectivity, which is convolved
ith an angle-dependent wavelet to form the calculated seismicAVA

esponses �Shuey, 1985�. The modified Hashin-Shtrikman lower
ounds �Hashin and Shtrikman, 1963� are used to calculate the effec-
ive moduli for porosities smaller than the critical value. This model
s described by Dvorkin and Nur �1996� as applied to modeling ve-
ocity-pressure relations for North Sea sandstones, and its use in
ombined seismic and EM inversion is described by Hoversten et al.
2003�.

For the EM forward model g2, we employed an integral-equation
olution for the electric field from an electric-dipole source within a
ayered medium �Ward and Hohmann, 1987�. Archie’s law �Archie,
942� is used to model electrical resistivity as a function of � and Sw.
he fluid bulk moduli �Kbrine,Koil,Khcg� and densities ��brine,�oil,�hcg�
f brine, oil, and hydrocarbon gas, respectively, are computed using
elations from Batzle and Wang �1992�.

Because seismic AVA and marine EM techniques are sampling
ifferent properties over different domains, we can consider them
s independent of each other. Thus, the likelihood function can be
ritten as fD�M,I�d*�m,I� = fD1�M,I�d1

*�m,I�
 fD2�M,I�d2
*�m,I�, where

* = g �m� + � represent the observations of seismic reflectivity,
1 1 1
nd d2
* = g2�m� + �2 include amplitudes and phases of the observed

lectric field. The forward models can be summarized as dij
*

gij�m� + �ij, i = 1, . . ., K, j = 1, . . ., Ni, where K is the number of
easurement types and Ni is the number of observations for the ith

ype.
The likelihood function can be represented by the distributions of

he errors �ij, i = 1, . . ., K, j = 1,. . .,Ni. Specifically, if it is assumed
hat �ij is characterized by a variance �ij

2 and that this is all that we
now of it, the MRE principle indicates that the least prejudiced pri-
r PDF for �ij is the Gaussian distribution. If one can assume that
hese distributions are independent, the likelihood function can be
epresented as

fD�M,�,I�d*�m,�,I�

= �
i=1

K

�
j=1

Ni 	 1
�2��ij

exp�−
1

2�ij
2 
dij

* − gij�m��2�� . �4�

he posterior PDF via inverse modeling

The vector � = ��ij,i = 1, . . ., K, j = 1, . . . , Ni� is generally un-
nown, and it is subjective to assign deterministic values to � based
n experiences. Here, we consider � as a random-variable vector;
hus, the joint PDF of m and � can be defined using Bayes’ theorem.
ssuming that � is independent of m, this PDF is given by

fM,��D,I�m,��d*,I�

=
fD�M,�,I�d*�m,�,I�fM�I�m�I�f��I���I�

�
m
�

�

fD�M,�,I�d*�m,�,I�fM,��I�m,��I�dpmd�Nz
*Nt��

.

�5�

To reduce computational demands, the dependence on � can be
liminated through analytical integration of equation 5 over �. The
ignificance of this step is in incorporating the uncertainty associat-
d with �, while deconditioning the final results from any specific
alue of �. A conservative approach is to assume that the errors
ary between zero and the upper bound of dij

* . Thus, the prior PDF
f��I���I� is modeled here as a uniform distribution between the
ounds. Consequently, the analytical integration of equation 5 over
leads to the desired posterior PDF of m �Hou and Rubin, 2005�:

fM�D,I�m�d*,I�




fM�I�m�I��
i=1

K

�
j=1

Ni 	Ei� 1

2uij
2


dij
* − gij�m��2� − Ei� 1

2lij
2


dij
* − gij�m��2��

�
m

fM�I�m�I��
i=1

K

�
j=1

Ni 	Ei� 1

2uij
2


dij
* − gij�m��2� − Ei� 1

2lij
2


dij
* − gij�m��2��dpm

,

�6�

here lij and uij are the lower and upper bounds for �ij, respectively,
nd Ei is the exponential-integral function, Ei�x� = �x

��exp�−t�/
�dt. Equation 6 can be used to narrow the posterior PDF and to im-
rove our model predictions given observations d*.
Since the forward models of seismicAVAand marine EM data are

ighly nonlinear and the number of unknown parameters is large, the
osterior distribution in equation 6 cannot be evaluated using con-
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Reservoir-parameter identification O81
entional analytical methods. Different sampling methods need to
e considered instead, such as the Monte Carlo sampling method,
uasi-Monte Carlo method, or importance sampling methods. The
ampling strategy in this study is presented inAppendix A.

SYNTHETIC STUDIES

We illustrate our approach by using seismic and EM data inver-
ion individually as well as jointly. A simple reservoir model assum-
ng known rock properties is used for initial testing. The synthetic
eismic and EM data sets are generated using a 1D model with
000 m of seawater over a conductive sedimentary sequence. The
arget horizon is 1700 m below the seafloor. The reservoir interval
omprises five 30-m-thick layers, two of which have high gas satura-
ion. From the upper to the bottom layers, the gas saturation values
re 0.1, 0.95, 0.4, 0.9, and 0.1, respectively. The corresponding po-
osity values are 0.15, 0.25, 0.15, 0.1, and 0.05, respectively. The
ynthetic AVA is sampled 50 times at 2 ms for five incident angles
0°, 10°, 20°, 30°, and 40°�, calculated from the Zoeppritz equation.
he synthetic EM data include the amplitude and phase of the mea-
ured electric field at 0.25 Hz for 21 source-receiver offsets. Gauss-
an random noise was added, starting with 10% noise �S/N ratio is
0� for the first angle and increasing up to 30% �S/N ratio is 3.3� at
he far angle. Similarly, 10% Gaussian noise was added to the elec-
ric fields at the near offsets, increasing to 30% at the maximum off-
et. The prior bounds for the porosity and gas saturation of each layer
re taken to be �0, 0.3� and �0, 1�, respectively. This represents a uni-
orm prior distribution of gas saturation and porosity based on entro-
y theory. The synthetic analysis starts with the uniform distribu-
ions to see if the inclusion of EM data can improve our estimates of
eservoir parameters.

We performed a seismic-only inversion, simultaneously targeting
0 variables, including the porosity and gas saturation of the five lay-
rs. Seismic AVA inversion provides relatively accurate estimates of
he porosity �see the solid curved lines in the left panels in Figure 3�.
n general, the uncertainty associated with the porosity estimation
ncreases from the top to the bottom layers because the seismic data
lways have better coverage of the upper layers than the bottom
nes. Despite the accurate estimates obtained for porosity, the seis-
ic inversion yielded poor estimates for gas saturation, as shown in

he right panels in Figure 3. This is not surprising because seismic
VA responses are less sensitive to gas saturation changes, as dis-
ussed in the introduction.

Combining both the seismicAVAand EM data in a joint inversion,
e obtain the results in parameter predictions as shown in Figure 3

dashed lines�. By comparing the results with those obtained from
nly inverting seismic data, we can see a significant improvement
or porosity at all layers. The gas saturations in layers 1 and 2 are well
haracterized. The predicted modes of the marginal PDFs are close
o the actual values of the target variables, although the uncertainty
evels in the gas saturations for layers 3�5 are still large.

Multiple-frequency data are available �e.g., 0.25, 0.75, and
.25 Hz� in practice. To test the inversion performance with more in-
ormation included, we generated EM synthetic data at three fre-
uencies common in field data. The inversion results are shown in
igure 3 in dotted lines, from which we can see that the joint inver-
ion using seismic and multiple-frequency EM data provides better
stimates of gas saturation at all layers. Although the uncertainty
evels for the bottom layers remain significant, the modes of the
DFs are closer to the true values, thus all gas-rich or water-rich lay-
rs are identified. As stated above, up to 30% noise has been intro-
uced into both measurements and the forward-model responses;
hus, large predictive bounds are not unexpected.

In synthetic analyses, it is also interesting to explore conditions
hat are less favorable for joint inversion and to estimate the error
evel in the data that makes the joint inversion nonbeneficial. In the
ollowing study, we work on a different synthetic model by flipping
he target layers upside down, such that the top layers are more resis-
ive with high gas saturation; the contrast between adjacent layers is

uch less compared to the original synthetic case. Specifically, from
he upper to the bottom layers, the gas saturation values are 0.95, 0.9,
.05, 0.1, and 0.4, respectively. The corresponding reference porosi-
y values are 0.25, 0.1, 0.15, 0.05, and 0.15, respectively. As shown
n Figure 4, we obtain good estimates of the porosity at all layers and
he gas saturation in the top gas-rich layers of the target zone. How-
ver, because of the existence of the resistive layers on the top of the
arget zone, the CSEM and the seismic AVA responses become less
ensitive to changes in the gas saturation at bottom layers; mean-
hile, the gas saturation has less contrast between adjacent layers.
s a result, the gas saturation at the bottom layers is not well identi-
ed. This study shows that the joint-inversion results using seismic
VA and EM data could be compromised under unfavorable condi-

ions, for example, with resistive layers on top or with weak contrast
n target parameters between adjacent blocks. Under these situa-
ions, the EM and seismic AVA responses are not sensitive to chang-
s in target parameters.

igure 3. Estimated porosity and gas saturation. The solid curved
ines represent the estimated PDFs using seismicAVAdata only. The
ashed lines represent estimates using both seismic AVA and 0.25-
z CSEM data. And the dotted lines represent estimates using seis-
ic AVA and multiple-frequency �0.25, 0.75, and 1.25 Hz� CSEM

ata. The vertical lines represent the true values. The plots to the left
re the estimates of porosity at layers 1�5 �from top to bottom�. The
lots to the right are the estimates of gas saturations at layers 1�5
from top to bottom�.
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O82 Hou et al.
We perform similar inversion analyses using synthetic data gener-
ted using various true models and associated with different error
evels. In general, the inclusion of EM data improves our ability to
dentify the gas-rich layers, although the improvements may vary
iven different locations of gas-rich and water-rich layers. When the
rror levels associated with the EM data are very high �e.g., the S/N
atio is around three or even smaller at the near offset�, the joint-in-
ersion results converge to that of seismic AVA only inversion, thus
aking the inclusion of EM data nonbeneficial. Moreover, when the
/N ratio is around two or even smaller at small incident angle for the
eismicAVAdata, even the porosities cannot be identified.

TROLL FIELD STUDIES

In this section, we apply our MRE-based Bayesian approach to
he Troll field site, the location of which is shown in Figure 5. The
roll field is located in the North Sea, near the west coast of Norway,
n the edge of the Horda Platform. The field is divided by two major
orth-south-trending faults that separate the field into three provinc-
s; Troll West Oil Province �TWOP�, Troll West Gas Province
TWGP�, and Troll East. Our study site is located at TWGP, where
eismic and marine CSEM data are available, since 2003. The ma-
ine CSEM line from receivers 1 to 24 is shown as the straight line in
he southwest direction in Figure 6. Also shown in Figure 6 is the
implified geological cross section below the CSEM transect. The
eservoir interval is Jurassic sandstones, with a thick gas column.
ydrocarbon-filled sands show high average resistivities, between
00 and 500 �m, and occur at a depth of about 1400 m below sea
evel. Water-bearing sandstones, sands, and overburden sediments
how resistivities in the 0.5–2-�m range �Johansen et al., 2005�. Be-
ides the high reservoir resistivities, the well-defined field edges, the

igure 4. Estimated porosity and gas saturation using seismic AVA
nd multiple-frequency �0.25 Hz, 0.75 Hz, and 1.25 Hz� CSEM
ata. The vertical lines represent the true values. A different true
odel is assumed by flipping the target layers upside down.
ow and relatively constant resistivities in the geological layers
bove the reservoir, and the moderate distribution of the hydrocar-
on-filled reservoir, the TWGP site is also characterized by the
mooth seafloor and the constant water depth. These characteristics
ake it well suited for testing our seismic and EM inversion ap-

roaches, with the assumption that the actual earth can be represent-
d by a 1D layered model. There are several boreholes available
round the TWGP site, and well 31/2-1 intersects the reservoir be-
eath the CSEM transect near receiver 16. The small area near re-
eiver 16 is chosen as our study site because the well-log data can
rovide prior information about the reservoir parameters or provide
nformation for model evaluation.

A well located approximately 4 km to the northeast of our survey
ine was used to derive all the parameters of the rock-properties

odel, described in Hoversten et al. �2006�. This well was also used
o derive the angle-dependent wavelets used in the AVA modeling of
he seismic data at the CMP nearest receiver 16.

The 3D seismic data used in this study are migrated and sorted
nto CMP gathers. NMO and residual NMO were applied, along
ith multiple removal and filtering to a nominal zero-phase wavelet.
he CMP-gather offsets were converted to angles by ray tracing in a

ayered model with velocity and density taken from well 31/2-1.

igure 5. Location map of Troll field site �Leiknes et al.�.

igure 6. Simplified geological cross section along the CSEM sur-
ey line in the Troll West Gas Province �TWGP� �after Johansen et
l., 2005�. The marine CSEM line from receivers 1 to 24 is shown as
he straight line in the southwest direction in the inset. The large pan-
l gives the locations of the CSEM receivers along the survey line.
he receivers are deployed from southwest to northeast along the

ine. Well 31/2-1 intersects the reservoir beneath the CSEM transect
etween receivers 16 and 17.
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Reservoir-parameter identification O83
epth-time pairs were generated from well 31/2-1 and used to deter-
ine the time window for the seismic data such that the data covered

he depth interval 100 m above and below the reservoir zone �Hov-
rsten et al., 2006�.

Marine EM data used in this study consist of amplitude and phase
s a function of frequency and transmitter-receiver offset at receiver
6, the closest receiver to the well. Receivers 1 to 24 are placed along
he CSEM survey line from southwest to northeast, with nominal
eparation between receivers of 750 m along the line.A220-m elec-
ric-dipole transmitter, producing 800 amps, was towed at approxi-

ately 2 knots along the receiver line in both directions, producing
ata at the receivers for transmitters on either side of the receiver.
he EM amplitudes and phases along with the applied current and

ransmitter locations are recorded as time series, which are then av-
raged to produce in-phase and out-of-phase electric field for aver-
ge transmitter locations spaced 100 m apart along the line. The data
re recorded at three frequencies: 0.25, 0.75 , and 1.25 Hz.

Figure 7 shows the CSEM data converted to amplitude and phase
f the electric field in the line direction �roughly parallel to the trans-
itter dipole orientation� for receiver 16. If the earth had a 1D con-

uctivity structure �as the inversion forward model assumes�, the re-
ponse, both amplitude and phase, would be identical for transmit-
ers on either side of the receiver. We see that this is true for offsets up
o about 4 km. Beyond 4 km, the difference between data from
ransmitters on either side of the receiver increases with offset and
requency. The largest asymmetry occurs for the highest frequency
t the far offsets in both amplitude and phase.

In general, the spatial sensitivity of the CSEM data to this dipole-
ipole configuration is a function of source-receiver offset, earth
onductivity, and frequency, with lower frequencies and larger off-
ets having sensitivity to deeper changes �Spies, 1989�.As the trans-
itter-receiver offset increases, the centroid of the sensitivity region
oves downward and away from the receiver in the direction toward

he transmitter. To approximate a 1D response, we have averaged the
M data for transmitters on either side of the receiver, thus causing

he centroid of the sensitivity region of the averaged data to be di-
ectly below the receiver location.

The water depth over the survey area is 320 m. In general, the
agnitude of the response from resistive zones in the subsurface as a

ercentage of the total observed field becomes less as the water
epth decreases. This is caused by the increased magnitude of the di-
ect air wave, that portion of the total field that propagates up through
he water, through the air, and back down to the receivers. In princi-
le, if the seafloor bathymetry and seawater conductivity are well
nown, this effect can be incorporated in the modeling so that inver-
ion of the data can accurately image the subsurface. In practice,
here is some noise floor below which the target response cannot be
xtracted from the total field. The list of noise includes, but is not
imited to, incorrect assumptions about water conductivity, incorrect
ositioning of sources and receivers, and errors in transmitter cur-
ent magnitude and phase. The determination of when the water
epth is too shallow must be done on a site-by-site basis and is de-
endent on the size, resistivity, and depth of the target. In the case
resented here, the resistive section of the Troll field is over 100 m
hick at a depth of 1400 m, and forward modeling shows that the res-
rvoir produces a contribution to the total field that is approximately
5% at an offset of 5 km, which is 1 km before the air wave begins to
ominate the response.

In addition to the seismic and EM data, Vp, Sw, density, and porosi-
y logs are available from well 31/2-1. No production has occurred
n the area near the well, so we expect that Sw has not changed by
ore than 1% or 2% since the logs were taken. The well log also

hows a predominantly oil zone between 1544.5 and 1557.5 m
epth, where original oil saturations were between 70% and 85%.
elow 1557.5 m depth is a paleo-oil zone, where original oil satura-

ions were 20% to 30%. No gas- or oil-saturation logs are available,
ut time-lapse seismic data have been interpreted as follows: Be-
ween the time of log measurements and the geophysical survey data
sed in this study, production from the oil rim has lowered reservoir
ressures such that gas has been released from the oil in the oil and
aleo-oil zones, resulting in a 5% increase in gas saturation in these
ones �Hoversten et al., 2006�. We therefore use the logged Sw to cal-
ulate oil and gas saturation in the reservoir as follows: Above
544.5 m depth, oil saturation �So� is assumed to be zero thus, Sg=1
Sw. Below 1544.5 m, Sg=0.05 thus, So=1−Sw − 0.05. The logged
w and calculated Sg and So are used for comparing the performance
f the different inversions.

The Bayesian model in equation 2 for this application was devel-
ped based on the geometry shown in Figure 2. We divide the reser-
oir into 16 layers, each of which has a thickness of 20 m. The un-
nowns are Sw, Sg, So, and � for each of these target layers. For seis-
ic AVA data inversion, we also consider Vp, Vs, and � as unknowns

or the five layers above and the one layer below the reservoir, with
ach layer having a thickness of 20 m. For EM data inversion, we
lso include among the unknowns the electrical conductivity at each
ayer of the reservoir overburden �including seawater�, which is di-
ided into 13 layers based on resistivity logs collected from well
1/2-1.

Overburden Vp, Vs, and � above the target zone are required for
wo reasons. First, the time interval for the seismic data used in the
nversion is chosen from a time-to-depth conversion based on the
vailable velocity model, which may be in error. If the depth to the
op of the target �reservoir� zone does not exactly tie to the selected
ime window, the inversion can adjust Vp above the target zone as a
orrection. Second, log information required to calculate the rock-
roperties model is usually only taken within the reservoir, so that
e can only describe the target zone itself in terms of fluid satura-

igure 7. Electric-field amplitude �upper row� and phase �lower row�
t 0.25, 0.75, and 1.25 Hz as a function of the source-receiver offset
m� at CSEM receiver near well 31/2-1. Transmitter locations to the
est of the receiver are plotted in black; transmitter locations to the

ast are plotted in red.
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O84 Hou et al.
ions and �. However, we need properties for the layer directly
bove the reservoir to calculate the reflection coefficient at the top of
he reservoir. The Vp, Vs, and � below the target interval are not strict-
y required but provide continuity in the seismic data fit at times be-
ow the reservoir.

We adopt relatively wide bounds for all these parameters in the
ollowing ways. For the parameters in the zones outside the reser-
oir, such as Vp, Vs, and � at the layers below and above the reservoir,
s well as the electrical resistivity of the overburden layers, we as-
ume they vary within 20% of the interval averages from well 31/2
1. For Sw and Sg, we set their bounds at ±0.3 from linear trends, with

g trending from one to zero, while Sw trends from zero to 0.8, going
rom the top to the base of the reservoir. The upper bound on So is set
o be 0.1 above 1544.5 m depth, where no oil was present in the orig-
nal logs; while below 1544.5 m, where oil was originally present,
he So upper bound begins at 1 at 1544.5 m and decreases linearly to
.3 at the base of the reservoir. The bounds for � at the target layers
re set at ±0.1 from their initial interval-averaged well-log values.
ll of these bounds are subject to the physical constraints on the rele-
ant parameters; for example, the bounds for Sw, Sg, So, and � should
e within the interval �0, 1�.

nversion results using uniform priors

As mentioned above, the MRE approach is used to determine the
rior distributions of these unknown parameters, given the prior in-
ormation such as the bounds and moments of the parameters. As-
uming the bounds on the target parameters are all the information
e have, the priors take the form of uniform distributions based on

ntropy theory, as shown in equation 3.
Using the uniform prior distributions, we performed an inversion

sing only the seismic data from the CMP gather at receiver 16; the
esults are shown in Figure 8. The red symbols are the borehole logs,
he green lines are the prior bounds, the blue lines represent the esti-

ated posterior modes, and the black dashed lines represent 0.5%
nd 99.5% quantiles of predictions �99% predictive intervals�. From

igure 8. Inversion using seismic data only. Red dotted lines repre-
ent well-log values, green lines are the prior bounds, blue lines are
he estimated posterior modes, and black lines represent 99% predic-
ive intervals.
igure 8, we can see that the predicted porosities are close to the
ogged values. Compared to the prior bounds, the predictive inter-
als show that the predicted uncertainty decreases.

The water saturations at the target layers are not well identified,
nd the predictive intervals are almost the same as the prior bounds.
onsequently, the uncertainty levels associated with both the gas

aturation and the oil saturation at almost all target layers are not re-
uced. These results are reasonable because seismic responses are
ore sensitive to porosity but are less sensitive to water, gas, or oil

aturations. For Sw, Sg, So, and �, the rms of the misfits between the
nverted-parameter values �posterior modes� and the well-log obser-
ations is 0.724. Our method calculates posterior distributions in-
tead of specific values such as posterior modes. Although both the
ms misfit and the predictive intervals are used to evaluate the good-
ess of the inversion results, we consider the latter to be more infor-
ative.
The seismic AVA model responses calculated using the posterior
odes of the parameters are shown in Figure 9, together with the ob-

erved seismic data and the differences between model responses
nd observations. From the figure, we can see that the modeled seis-
ic AVA responses match the observations very well. To facilitate

he comparison of the results using different inversion approaches,
e also calculated the rms of the differences between the modeled

eismic AVA responses and the observations. The rms seismic data
isfit in this case is 0.766, which was normalized by the maximum

alue of seismic observations.
Figure 10 shows the inversion results using only the EM data at re-

eiver 16 �Rx16�. The uncertainty levels associated with both water
aturations and porosity at the target layers are not reduced. Al-
hough the posterior modes of water saturations at top layers and po-
osity at middle layers are close to the well logs, the corresponding
redictive intervals are too large to make the predictions convincing.
oreover, the high water saturations between the depth of 1560 m

nd 1640 m are not identified. These results are compatible with our
ynthetic case studies; the estimation of porosity and water satura-

igure 9. �a� Observed seismic AVA gather, �b� calculated AVA data
rom seismic-only inversion, and �c� the difference between ob-
erved and calculated AVA data. Zero time corresponds to the top of
he seismic-inversion zone 100 m above the reservoir. The top and
ase of the reservoir are at 0.1 and 0.37 s, respectively.
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Reservoir-parameter identification O85
ion using only EM data is poor because the EM responses are affect-
d by porosity and water saturation simultaneously and their effects
annot be separated.

The EM observations and the calculated model responses based
n the posterior modes of the parameters are plotted in Figure 11.
he EM model responses calculated from the estimated parameters
atch the observed amplitudes well at all frequencies. However, the
atches between the calculated and observed phases are not good at

urther offset. The reason could be that the EM data are influenced by
he heterogeneity of the reservoir, the effect of which is amplified at
he larger offsets; therefore, the 1D layered-model assumption be-
omes inappropriate compared to the smaller offsets. Moreover, the
hase matches are better for lower-frequency EM data because high-
r-frequency EM data have higher resolution and thus are more easi-
y influenced by the heterogeneity between the sea surface and the
ottom of the reservoir. Considering that the EM observations range
ver several orders of magnitude, we normalized the misfits by the
M observations �relative misfits = misfits/observations�, and the
orresponding rms value of the relative misfits is 0.217.

Figure 12 shows the inversion results for joint inversion using the
M and seismic AVA data simultaneously. Compared to the results
sing seismic data only, the posterior modes of water saturations
rom joint inversion are much closer to the well logs for the target
ayers: the corresponding rms misfit of water saturation decreases
rom 0.212 to 0.170. The achieved rms misfits for Sw and So, as well
s the total misfit, are smaller than those obtained using nonlinear
east-squared approach by Hoversten et al. �2006�. The estimates of
he gas saturations for the upper half of the reservoir layers are also
mproved. However, the predictive intervals are still large. These re-
ults indicate that the parameter estimation at the target layers can be
mproved with the inclusion of EM data, but the uncertainty levels of
hese parameters remain high given the relative noninformative pri-
r bounds.

igure 10. Inversion using EM data only. Red dots and lines repre-
ent well-log values, green lines are the prior bounds, blue lines are
he estimated posterior modes, and black lines represent 99% predic-
ive intervals.
nversion results using truncated exponential priors

In application, more information on the reservoir parameters may
e available, for example, their expectation values �prior means�.
iven information about the bounds and the prior means, the priors

ake the form of truncated exponential distributions based on MRE
heory �Woodbury and Ulrych, 1993; Rubin, 2003; Hou and Rubin,
005�. The prior means can be obtained from other sites explored in
his province. To show how this additional information can be used
o improve our parameter estimation, we use the values from the lin-
ar trends as the prior means, with Sg trending from one to zero and

w trending from zero to 0.8, considering the possible presence of oil
ear the base of the reservoir.

Using the truncated exponential priors, we performed inversions
sing seismic AVA data and EM data individually, as well as a joint

igure 11. Observed CSEM data at receiver 16 and calculated data
rom EM inversion only. Red lines represent the field data, black
ines represent the calculated data.

igure 12. Joint inversion using seismic and EM data. Red dots and
ines represent well-log values, green lines are the prior bounds, blue
ines are the estimated posterior modes, and black lines represent
9% predictive intervals.
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O86 Hou et al.
nversion using both types of data. The results are shown in Figures
3–15. By comparing these three figures with Figures 8, 10, and 12,
espectively, we can see that the predictive intervals of almost all of
he target parameters are much narrower because the ambiguity
bout these parameters has been reduced through the inclusion of the
rior means. In addition to the narrower predictive intervals, the esti-
ated posterior modes are closer to the well-log values. The im-

roved posterior predictions are expected because more information
s included when using the MRE approach to obtain the priors. It can
e the case that information that is considered a suitable prior may in
act become incompatible with field observations as more observa-
ions become available. Our previous work �Hou and Rubin, 2005�

igure 13. Inversion using only seismic data with information about
rior means. Red dots and curve represent well-log values, green
ines are the prior means, blue lines are the estimated posterior

odes, and black lines represent 99% predictive intervals.

igure 14. Inversion using only EM data with information about pri-
r means. Red dots and curve represent well-log values, green lines
re the prior means, blue lines are the estimated posterior modes, and
lack lines represent 99% predictive intervals.
tudied the issues of prior incompatibility and showed that a heavy
oncentration of the posterior probability next to any of the prior
ounds indicates such incompatibility.

By comparing the results from joint inversion �Figure 15� and
eismic-only inversion �Figure 13�, we can see that the inclusion of
he CSEM data in the joint inversion improves the predictions of the
arget parameters with reduced predictive intervals and that the pre-
ictions of the gas saturations at the bottom layers of the reservoir
re closer to the well-log observations.

The rms misfits between the inverted parameters and well-log ob-
ervations, as well as the rms misfits between the CSEM/seismic
VAobservations and the calculated model responses using inverted
arameters are summarized in Table 1. For both uniform and truncat-
d exponential prior PDFs, including CSEM data in the inversion re-
uces the rms misfits between the inverted parameters and the well
ogs. When using different combinations of seismicAVAand CSEM
ata, the more informative prior enables us to achieve smaller mis-
ts.Another observation from the table is that the misfit between the
eismic AVA observations and the calculated model responses be-
omes slightly larger, because the model fit for seismic AVA data is
ompromised by the inclusion of the CSEM data in the joint inver-
ion.

In summary, the inclusion of EM data improves our estimates of
ater, gas, and oil saturations; it yields narrower predictive intervals

s well as predictions that are generally closer to the well-log obser-
ations. The MRE-Bayesian framework enables us to deal with dif-
erent types of prior information. Additional information, such as
rior means, leads to much narrower predictive intervals of the target
arameters as well as closer predictions to the well logs. Figure 16
hows the posterior distributions of the gas saturations at the third
ayer �gas-rich layer� and fifteenth layer �water-rich layer� from the
op of the reservoir �e.g., 1405-m depth�, illustrating the benefits of
ncluding the CSEM data and information about the prior means into
he inversion procedure.

igure 15. Joint inversion using seismic and EM data, with informa-
ion about prior means. Red dots and curve represent well-log val-
es, green lines are the prior means, blue lines are the estimated pos-
erior modes, and black lines represent 99% predictive intervals.
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CONCLUSIONS

We propose an MRE-Bayesian approach for joint seismic and EM
nversion. Our preliminary results from synthetic data indicate that
oint inversion based on seismic and EM data improves our capabili-
y to identify and confirm the locations of gas-rich layers. Seismic
VA responses can be used to identify the porosity very well. How-
ver, the responses are not sensitive to gas saturation changes; thus,
ncorporation of EM data in the inversion is warranted and is proven
o be useful in improving our ability to predict gas saturation.

The approach is also applied to field data at Troll field in the North
ea. Results show the benefits of including EM data together with
eismic data in the inversion. Compared to any individual inversion
sing either seismic or EM data, the joint inversion gives predictions
hat are generally closer to well logs and gives narrower predictive
ntervals, which means the ambiguity or uncertainty associated with
he parameters is reduced.

able 1. Root-mean-square misfits between the inverted param
bservations, and the calculated model responses using invert

Rms
misfit
�Sw�

Rms
misfit
�Sg�

R
m
�

niform
rior

Seismic
inversion

0.212 0.271 0

EM
inversion

0.198 0.238 0

Joint
inversion

0.170 0.257 0

runcated
xponential
rior

Seismic
inversion

0.163 0.219 0

EM
inversion

0.189 0.238 0

Joint
inversion

0.159 0.219 0

igure 16. The posterior distributions of the gas saturations at the
hird layer �gas-rich layer� and fifteenth layer �water-rich layer� from
he top of the reservoir �e.g., 1405 m depth�.
The advantage of formulating this inverse problem in a stochastic
ramework is manifested in the statistics of the target parameters. In-
tead of the usual single-valued estimation that is provided by the de-
erministic approach, we obtain a probability distribution, which al-
ows computing mean, mode, and confidence intervals and is useful
or a rational evaluation of uncertainty and its consequences. More-
ver, the MRE-Bayesian framework enables us to achieve much bet-
er parameter-estimation results when implementing a more infor-

ative prior.
We made several important assumptions in the study. We assumed

he earth can be represented by a 1D layered model. This assumption
ay be inappropriate for high-frequency EM data sets at large off-

ets, because higher frequency EM responses are more easily affect-
d by 3D structures of the earth. For seismic data, we assumed that
he effects of multiples and waveform spreading can be neglected.

e also assumed that the rock-physics model parameters developed
rom the well logs nearby are true for our study site. These assump-
ions can be overcome by increasing the complexity of both the seis-

ic and EM models. For example, we can use 1D elastic-seismic
alculation with waveform spreading, mode conversions, and all
ultiples; or we can consider quasi-2D, 2D, or even 3D forward
odels.
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and well logs, rms misfits between the EM/seismic AVA
ameters.

Rms
misfit

�porosity�

Rms of
�Sw, Sg,
So, and

porosity�

Rms
misfit

�seismic
AVA�

Rms
misfit

�CSEM�

0.058 0.724 0.766 —

0.064 0.710 — 0.217

0.058 0.640 0.888 0.155

0.057 0.584 0.686 —

0.074 0.621 — 0.228

0.056 0.580 0.722 0.138
eters
ed par

ms
isfit
So�
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.210
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.120
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APPENDIX A

QUASI-MONTE CARLO INTEGRATION OF
NONLINEAR FUNCTIONS

As shown in equations 1 and 6, to get the posterior PDF and the
osterior moments, integrations of nonlinear functions need to be
arried out using Monte Carlo integration coupled with the concept
f importance sampling. Here, a quasi-Monte Carlo method is used
Ueberhuber, 1997, p. 125�. Quasi-Monte Carlo integration is a
ethod of numerical integration that uses sequences of quasi-

andom numbers to compute the integral. Quasi-random numbers
re generated algorithmically by computer and are similar to pseu-
orandom numbers, while having the additional important property
f being deterministically chosen based on equidistributed sequenc-
s in order to minimize errors. It moves rapidly and smoothly to finer
cales with increasing samples. One does not need to decide in ad-
ance how fine the grid should be; the method can sample until some
onvergence or termination criterion is met.
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